Telegram Group & Telegram Channel
Retentive Network [2023] - чёрная магия или мошенничество?

Все уже выучили идею Attention - берём матрицу Query (Nxd), Key^T (dxN), умножаем и применяем софтмакс - получаем распределение того, на какие токены смотрит каждый токен. Матрица получается NxN, и от этого квадратичного размера у всех подгорает. Потом результат умножается на Value (Nxd) и получается выход.

Некоторые внимательные товарищи заметили, что если убрать софтмакс, то вычисления почти не изменятся, но attention внезапно станет полностью линейной операцией - Q x K^T x V. В этом случае вычисление выхода можно пересобрать так, чтобы сложность стала линейной!

Грубо, в двух словах, мы провернули следующее:
В обычном трансформере мы считаем для каждого токена:
s_1(q_i x k_1) x v_1 + s_2(q_i x k_2) x v_2 + ...
Где s_1, s_2 - это несвязанные между собой применения софтмакса с учётом других query-токенов.

Убирая софтмаксы, мы получаем:
q_i x k_1 x v_1 + q_i x k_2 x v_2 + ...
Что позволяет вынести q_i за скобки:
q_i x (k_1 x v_1 + k_2 x v_2 + ...)

Но эта сумма в скобке-то для всех токенов одна и та же!
Мы можем посчитать её один раз и не умножать матрицы размером Nxd и dxN друг на друга. В реальности всё чуть сложнее - мы считаем эту сумму налету, двигаясь слева направо, чтобы воспроизвести логику Causal Mask - когда токены смотрят только на предыдущие токены.

Согласно экспериментам, производительность близка к трансформерной, но работает несоизмеримо быстрее. С другой стороны, в теории эта нелинейность может оказаться необходимой - по той же причине, по которой мы не можем убрать нелинейности из MLP. Но авторы компенсируют это втыканием нелинейностей в другом месте. Может быть, это и есть оптимальное решение - перенести линейности туда, где они не создают боттлнеков в расчётах.

Будем следить за развитием событий!

@knowledge_accumulator



tg-me.com/knowledge_accumulator/113
Create:
Last Update:

Retentive Network [2023] - чёрная магия или мошенничество?

Все уже выучили идею Attention - берём матрицу Query (Nxd), Key^T (dxN), умножаем и применяем софтмакс - получаем распределение того, на какие токены смотрит каждый токен. Матрица получается NxN, и от этого квадратичного размера у всех подгорает. Потом результат умножается на Value (Nxd) и получается выход.

Некоторые внимательные товарищи заметили, что если убрать софтмакс, то вычисления почти не изменятся, но attention внезапно станет полностью линейной операцией - Q x K^T x V. В этом случае вычисление выхода можно пересобрать так, чтобы сложность стала линейной!

Грубо, в двух словах, мы провернули следующее:
В обычном трансформере мы считаем для каждого токена:
s_1(q_i x k_1) x v_1 + s_2(q_i x k_2) x v_2 + ...
Где s_1, s_2 - это несвязанные между собой применения софтмакса с учётом других query-токенов.

Убирая софтмаксы, мы получаем:
q_i x k_1 x v_1 + q_i x k_2 x v_2 + ...
Что позволяет вынести q_i за скобки:
q_i x (k_1 x v_1 + k_2 x v_2 + ...)

Но эта сумма в скобке-то для всех токенов одна и та же!
Мы можем посчитать её один раз и не умножать матрицы размером Nxd и dxN друг на друга. В реальности всё чуть сложнее - мы считаем эту сумму налету, двигаясь слева направо, чтобы воспроизвести логику Causal Mask - когда токены смотрят только на предыдущие токены.

Согласно экспериментам, производительность близка к трансформерной, но работает несоизмеримо быстрее. С другой стороны, в теории эта нелинейность может оказаться необходимой - по той же причине, по которой мы не можем убрать нелинейности из MLP. Но авторы компенсируют это втыканием нелинейностей в другом месте. Может быть, это и есть оптимальное решение - перенести линейности туда, где они не создают боттлнеков в расчётах.

Будем следить за развитием событий!

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/113

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

Knowledge Accumulator from tw


Telegram Knowledge Accumulator
FROM USA